ՀՀ ԳԱԱ Տեղեկագիր: Մաթեմատիկա =Известия НАН Армении: Математика =Proceedings of the NAS Armenia: Mathematics

Stability principles and approximation problems in variational calculus

Kosmol, P. and Muller-Wichards, D. (2005) Stability principles and approximation problems in variational calculus. Հայաստանի ԳԱԱ Տեղեկագիր. Մաթեմատիկա, 40 (6). pp. 20-36. ISSN 00002-3043

[img]
Preview
PDF
Download (2480Kb) | Preview

    Abstract

    The problem of pointwise minimization of the Langrangian is approached by a simultaneeous optimization with respect to both state and control variables. The Legendre-Riccati condition ensures the existence of an equivalent convex variational problem, making possible application of the corresponding stability principles. The approach also provides an elementary acess to the fundamental theorems of variational calculus, without employing the theory of fields of extremals. Applications are in the problems of modular and parameter-free approximation of time-series data by monotone functions. We present a method, based on variational calculus, to determine a smooth monotone function that approximates a given time-series data in the least squares sense.

    Item Type: Article
    Additional Information: Принципы стабильности и задачи аппроксимации в вариационном исчислении.
    Uncontrolled Keywords: Космол Петер, Мюллер-Вихардс Дитер.
    Subjects: Q Science > QA Mathematics
    Divisions: UNSPECIFIED
    Depositing User: Bibliographic Department
    Date Deposited: 09 Oct 2012 10:10
    Last Modified: 05 Nov 2012 13:54
    URI: http://mathematics.asj-oa.am/id/eprint/622

    Actions (login required)

    View Item