Известия НАН Армении, Математика, том 53, № 4, 2018, стр. 3 – 14
О ЕДИНИСТВЕННОСТИ РЯДОВ ПО ОБЩЕЙ СИСТЕМЕ ФРАНКЛИНА

Г. Г. ГЕВОРКЯН, К. А. НАВАСАРДЯН

Ереванский государственный университет
E-mails: ggg@ysu.am, knavasard@ysu.am

Аннотация. Рассматривается общая система Франклина, соответствующая парному регулярному разбиению отрезка [0; 1]. Доказываются теоремы единственности и восстановления коэффициентов для рядов по таким системам, которые удовлетворяют некоторому необходимому условию и сходятся по модулю.

MSC2010 number: 42C10; 42C20.

Ключевые слова: общая система Франклина; теорема единственности; формула восстановления; А-интеграл.

1. Введение

В настоящее время общая система Франклина активно исследуется многими авторами. Некоторые свойства этой системы, полученных в работах [1]-[4], мы укажем по мере необходимости. Начнем с определения общей системы Франклина.

Определение 1.1. Последовательность (разбиение) \(\mathcal{T} = \{t_n : n \geq 0\} \) называется допустимой на [0; 1], если \(t_0 = 0, t_1 = 1, t_n \in (0; 1), n \geq 2 \), \(\mathcal{T} \) всюду плотно в [0; 1] и каждая точка \(t \in (0; 1) \) встречается в \(\mathcal{T} \) не более чем два раза.

Пусть \(\mathcal{J} = \{t_n : n \geq 0\} \) допустимая последовательность. Для \(n \geq 2 \) обозначим \(\mathcal{J}_n = \{t_i : 0 \leq i \leq n\} \). Допустим \(\pi_n \) получается из \(\mathcal{J}_n \) неубывающей перестановкой: \(\pi_n = \{\tau_i^n : \tau_i^n \leq \tau_{i+1}^n, 0 \leq i \leq n - 1\}, \pi_n = \mathcal{J}_n \). Тогда через \(S_n \) обозначим пространство функций определенных на [0; 1], которые непрерывны слева, линейны на \((\tau_i^n; \tau_{i+1}^n) \) и непрерывны в \(\tau_i^n \), если \(\tau_{i-1}^n < \tau_i^n < \tau_{i+1}^n \). Ясно, что \(\dim S_n = n + 1 \) и \(S_{n-1} \subset S_n \). Следовательно, существует (с точностью до знака) единственная функция \(f \in S_n \), ортогональная \(S_{n-1} \) и \(\|f\|_2 = 1 \). Эту функцию называют \(n \)-й функцией Франклина, соответствующей разбиению \(\mathcal{J} \). Известно, что \(f(t_n) \neq 0 \). Поэтому полагается \(f(t_n) > 0 \).

Исследования выполнены при финансовой поддержке ГКН МОН РА в рамках научного проекта 18Т–1А006
Определение 1.2. Общая система Франклина \(\{ f_n(x) : n \geq 0 \} \) соответствующая разбиению \(\mathcal{T} \) определяется по правилу \(f_0(x) = 1, f_1(x) = \sqrt[3]{2x - 1} \), \(x \in [0, 1] \), и для \(n \geq 2 \) функция \(f_n(x) \) есть \(n \)-я функция Франклина, соответствующая разбиению \(\mathcal{T} \).

Для последовательности \(t_n = \frac{2n-1}{2^n+1} \), где \(n = 2^k + m, 1 \leq m \leq 2^k, k = 0, 1, 2, \ldots \), получается классическая система Франклина, которая эквивалентным образом определена Ф. Франклином в [5]. Исследованию системы Франклина посвящены много работ. Систематическое исследование этой системы началось с работ [6], [7]. Здесь мы приведем только результаты непосредственно связанные с теоремами, которые будут доказаны в настоящей работе.

Для рядов по классической системе Франклина доказана теорема единственности, в условиях которой прякстует одно необходимое условие на мажоранту частичных сумм ряда (см. [8], теорема 3).

Теорема 1.1. Для того, чтобы ряд
\[
\sum_{n=0}^{\infty} a_n f_n(x)
\]
был рядом Фурье-Франклина некоторой интегрируемой функции \(f \), необходимо и достаточно, чтобы этот ряд п.е. сходился к \(f(x) \) и
\[
\lim_{\lambda \to \infty} \lambda \cdot \inf \left\{ \lambda \cdot \text{mes} \left\{ \frac{x \in [0; 1]}{\sup_{N} \left| \sum_{n=0}^{N} a_n f_n(x) \right| > \lambda} \right\} \right\} = 0,
\]
где \(\text{mes}(A) \) — Лебегова мера множества \(A \).

Пусть \(d \) некоторое натуральное число. Рассмотрим кратные ряды Франклина
\[
\sum_{m \in \mathbb{N}^d} a_m f_m(x),
\]
где \(m = (m_1, \ldots, m_k) \in \mathbb{N}^d \)-вектор с неотрицательными целочисленными координатами, \(x = (x_1, \ldots, x_d) \in [0; 1]^d \) и \(f_m(x) = f_{m_1}(x_1) \cdots f_{m_d}(x_d) \). Говорят, что ряд
\[
\sum_{m \in \mathbb{N}^d} a_m f_m(x),
\]
где \(m \preceq M \) означает \(m_j \leq M_j, j = 1, \ldots, d \), а \(M = (M_1, \ldots, M_d) \to +\infty \) означает \(\min_j M_j \to +\infty \).
О ЕДИСТВЕННОСТИ РЯДОВ ПО ОБЩЕЙ СИСТЕМЕ ФРАНКЛИНА

$$\sigma_\nu(x) = \sum_{m: m_1 \leq 2^\nu} a_m f_m(x), \quad \sigma^*(x) = \sup_{\nu} |\sigma_\nu(x)|,$$

где $m = (m_1, \ldots, m_d)$, и доказана следующая теорема.

Теорема 1.2. Для того, чтобы ряд (1.1) был бы рядом Фурье-Франклин некоторой функции $f \in L([0; 1]^d)$, необходимо и достаточно, чтобы выполнялись бы следующие условия

1. суммы $\sigma_\nu(x)$ по мере сходились бы к f;
2. $\liminf_{\lambda \to +\infty} \left(\lambda \cdot \text{mes} \left\{ x \in [0; 1]^d : \sup_{\nu} |\sigma_\nu(x)| > \lambda \right\} \right) = 0.$

В настоящей работе аналогичная теорема доказывается для рядов по общей системе Франклин, породженной парно регулярным разбиением отрезка $[0, 1]$. При этом вместо частичных сумм $\sigma_\nu(x)$ и функции $\sigma^*(x)$ приходится рассмотреть всю последовательность квадратичных частичных сумм и мажоранту этой последовательности.

2. ФОРУМУЛИРОВКА ТЕОРЕМ И НЕКОТОРЫЕ ВСПОМОГАТЕЛЬНЫЕ ЛЕММЫ

При исследовании свойств общей системы Франклина рассматриваются различные условия регулярности разбиения \mathcal{J}, введенные в работах [2]-[4] и [14]. В настоящей работе мы предполагаем, что разбиение \mathcal{J} парно регулярно.

Определение 2.1. Говорят, что допустимая последовательность \mathcal{J} парно регулярно с параметром $\gamma > 1$, если для каждого $n \geq 2$ и $1 \leq i \leq n$ имеем

$$\frac{1}{\gamma} \leq \frac{\tau_{i+1}^n - \tau_{i-1}^n}{\tau_i^n - \tau_{i-2}^n} \leq \gamma,$$

где полагается $\tau_{-1}^n = \tau_0^n = 0$, $\tau_{n+1}^n = \tau_n^n = 1$.

Далее полагается, что разбиение \mathcal{J} парно регулярно с параметром $\gamma > 1$ и \{\$f_i\}_{i=0}^\infty$ соответствующая ей общая система Франклин. При таких предположениях для ряда (1.1) введем обозначения

$$(2.1) \quad S_n(x) = \sum_{m: m_1 \leq n} a_m f_m(x),$$

и $S^*(x) = \sup_n |S_n(x)|$. Вера следующая теорема.
Теорема 2.1. Пусть суммы (2.1) по мере сходятся к некоторой функции \(f \) и для некоторой последовательности \(\lambda_k \to \infty \) выполняется

\[
\lim_{k \to +\infty} (\lambda_k \cdot \mes\{x \in [0; 1]^d : S^*(x) > \lambda_k\}) = 0.
\]

Тогда для любого \(m \in \mathbb{N}_0^d \) имеется место

\[
a_m = \lim_{k \to +\infty} \int_{[0,1]^d} [f(x)]_{\lambda_k} f_m(x) dx,
\]

где

\[
[f(x)]_{\lambda} = \begin{cases} f(x), & \text{если } |f(x)| \leq \lambda, \\ 0, & \text{если } |f(x)| > \lambda. \end{cases}
\]

Напомним, что функция \(f \) называется \(A \)-интегрируемой на \([0; 1]^d\), если выполняется

\[
\lim_{\lambda \to \infty} (\lambda \cdot \mes\{x \in [0; 1]^d : |f(x)| > \lambda\}) = 0
\]

и существует

\[
\lim_{\lambda \to \infty} \int_{[0,1]^d} [f(x)]_{\lambda} dx =: (A) \int_{[0,1]^d} f(x) dx.
\]

Поскольку для любого \(m \in \mathbb{N}_0^d \) функция \(f_m(x) \) ограничена, то при выполнении (2.3) имеется место

\[
\lim_{\lambda \to \infty} \int_{[0,1]^d} [f(x)]_{\lambda} f_m(x) dx = \lim_{\lambda \to \infty} \int_{[0,1]^d} [f(x)]_{\lambda} f_m(x) dx,
\]

если хотя бы один из этих пределов существует.

Потому из теоремы 2.1 вытекает следующее утверждение.

Теорема 2.2. Если суммы (2.1) по мере сходятся к некоторой функции \(f \) и выполняется условие

\[
\lim_{\lambda \to \infty} (\lambda \cdot \mes\{x \in [0; 1]^d : S^*(x) > \lambda\}) = 0,
\]

то функция \(f \) является \(A \)-интегрируемой и ряд (1.1) является рядом Фурье-Франклина в смысле \(A \)-интегрирования, т.е. для любого \(m \in \mathbb{N}_0^d \) имеем

\[
a_m = (A) \int_{[0,1]^d} f(x) f_m(x) dx.
\]

Отметим, что аналогичная теорема для классической системы Франклина доказана в работе [12]. Однако из теоремы 2.2 не следует результат работы [12], так как там вместо \(S^*(x) \) рассматривается \(\sigma^*(x) \).

Нам пригодится следующая лемма, доказанная в работе [13].
Лемма 2.1. Пусть функция G определена на $\Delta = [\alpha_1; \beta_1] \times \cdots \times [\alpha_d; \beta_d]$, $d \in \mathbb{N}$, и линейная функция по каждой переменной. Тогда если $L = \max_{t \in \Delta} |G(t)|$, то

$$\text{mes} \left\{ t \in \Delta : |G(t)| \geq \frac{L}{2^d} \right\} \geq \frac{\text{mes}(\Delta)}{3^d}.$$

Введем некоторые обозначения. Положим $\delta_i^n = (\tau^n_{i-1}, \tau^n_{i+1}) \cup \{\tau^n_i\}$, когда $0 \leq i \leq n$. Функции φ_i^n определяем следующим образом. Если $\tau^n_{i-1} < \tau^n_i < \tau^n_{i+1}$, то $\varphi_i^n(\tau^n_j) = \delta_{ij}$, $j = 0, 1, \ldots, n$, и φ_i^n линейна на $[\tau^n_{j-1}, \tau^n_j]$, $j = 1, \ldots, n$, где δ_{ij} - символ Кронекера, т.е. $\delta_{ij} = 1$, если $i = j$ и $\delta_{ij} = 0$, если $i \neq j$. Если же $\tau^n_{i-1} = \tau^n_i$, то функции φ^n_{i-1}, φ^n_i единственные кусочно линейные функции с узлами τ^n_j, принимающие значение 0 в узлах, отличных от двойного узла $\tau^n_{i-1} = \tau^n_i$, непрерывные слева в $\tau^n_{i-1} = \tau^n_i$, $\varphi^n_{i-1}(\tau^n_{i-1}) = 1$, $\varphi^n_{i-1}(\tau^n_{i-1} + 0) = 0$, $\varphi^n_i(\tau^n_i) = 0$, $\varphi^n_i(\tau^n_i + 0) = 1$.

Для натурального n положим $\mathbb{N}^d_n = \{0, 1, \ldots, n\}^d$. Для вектора $j = (j_1, \ldots, j_d) \in \mathbb{N}^d_n$ обозначим

$$\Delta^n_j = \delta^n_{j_1} \times \cdots \times \delta^n_{j_d}, \quad \tau^n_j = (\tau^n_{j_1}, \ldots, \tau^n_{j_d})$$

и

$$\varphi^n_j(t) = \varphi^n_{j_1}(t_1, \ldots, t_d) = \varphi^n_{j_1}(t_1) \cdots \varphi^n_{j_d}(t_d)$$

Тогда

$$S_n(x) = \sum_{m \in \mathbb{N}^d_n} a_m f_m(x).$$

Нетрудно заметить, что $\sum_{j=0}^n \varphi^n_j(x) = 1$, когда $x \in [0; 1]$. Следовательно,

$$\sum_{j \in \mathbb{N}^d_n} \varphi^n_j(x) = 1$$

когда $x \in [0; 1]^d$, и $\text{supp} \varphi^n_j = \Delta^n_j$.

Очевидно, что система функций $\{\varphi^n_j\}_{j \in \mathbb{N}^d_n}$ образует базис в линейном пространстве

$$S_n := \left\{ \sum_{m \in \mathbb{N}^d_n} b_m f_m(x) : b_m \in \mathbb{R} \right\}.$$

Последнему верное следующее утверждение.

Лемма 2.2. Если $G \in S_n$ и $G \neq 0$, то существует $j \in \mathbb{N}^d_n$, такое что

$$(G, \varphi^n_j) := \int_{[0; 1]^d} G(x) \varphi^n_j(x) \, dx \neq 0.$$

Имеем также

$$\int_{[0; 1]^d} \varphi^n_j(x) \, dx = \int_{\Delta^n_j} \varphi^n_j(x) \, dx = \prod_{i=1}^d \int_{\delta^n_{j_i}} \varphi^n_{j_i}(x_i) \, dx_i = \prod_{i=1}^d \frac{\text{mes}(\delta^n_{j_i})}{2} = \frac{\text{mes}(\Delta^n_j)}{2^d}.$$
(2.5) \[M_j^n(x) = \frac{2^d}{\text{mes}(\Delta_j^n)} \phi_j^n(x) \]
получим другой базис в \(S_n\), с условием

(2.6) \[\int_{[0,1]^d} M_j^n(x) dx = 1. \]

Верна следующая лемма.

Лемма 2.3. Для любых \(M_j^{n_0}(x)\) и \(n > n_0\) существуют числа \(\alpha_j\) такие, что

\[M_j^{n_0}(x) = \sum_{j \in \mathbb{N}_n^d} \alpha_j M_j^n(x), \]

причем

\[\sum_{j \in \mathbb{N}_n^d} \alpha_j = 1, \quad \alpha_j \geq 0 \quad \text{и} \quad \alpha_j = 0, \quad \text{если} \quad \Delta_j^n \not\subset \Delta_{j_0}^{n_0}. \]

Доказательство. Поскольку \(n > n_0\), то \(\varphi_j^{n_0} \in S_n\), где \(j_0 = (j_1^0, \ldots, j_d^0)\). Поэтому существуют \(\beta_i^n\) такие что

(2.7) \[\varphi_j^{n_0}(x_i) = \sum_i \beta_i^n \varphi_j^n(x_i). \]

Из определения функций \(\varphi_j^n\), нетрудно заметить, что \(\beta_i^n \geq 0\) и \(\beta_i^n = 0\), если \(\delta_i^n \not\subset \delta_{j_0}^{n_0}\). Тогда, из (2.4), (2.5) и (2.7) получим

(2.8) \[M_j^{n_0}(x) = \sum_{j \in \mathbb{N}_n^d} \alpha_j M_j^n(x), \]

где \(\alpha_j \geq 0\) и \(\alpha_j = 0\), если \(\Delta_j^n \not\subset \Delta_{j_0}^{n_0}\). Из (2.8) и (2.6) следует, что \(\sum_{j \in \mathbb{N}_n^d} \alpha_j = 1. \]

Убедимся, что теорема 2.1 получается из следующей теоремы.

Теорема 2.3. Пусть суммы (2.1) по мере сходятся к некоторой функции \(f\) и для некоторой последовательности \(\lambda_k \to \infty\) выполняется (2.2). Тогда для любых \(m_0, j^0 = (j_1^0, \ldots, j_d^0) \in \mathbb{N}_{m_0}^d\) и \(n \geq m_0\) имеет место

\[(S_n, M_j^{m_0}) = \lim_{k \to \infty} \int_{[0,1]^d} [f(x)]_{\lambda_k} M_j^{m_0}(x) dx. \]

Действительно, если \(m = (m_1, \ldots, m_d) \in \mathbb{N}_0^d\), то для \(n = \max_i m_i\) имеем, что \(f_m \in S_n\). Следовательно, для некоторых \(\alpha_j\) имеет место \(f_m(x) = \sum_{j \in \mathbb{N}_n^d} \alpha_j M_j^n(x)\). Тогда, в силу теоремы 2.3, имеем

\[a_m = (S_n, f_m) = \sum_j \alpha_j (S_n, M_j^n) = \sum_j \alpha_j \lim_{k \to \infty} \int_{[0,1]^d} [f(x)]_{\lambda_k} M_j^n(x) dx = \]
О ЕДИНИЧНОСТНОСТИ РЯДОВ ПО ОБЩЕЙ СИСТЕМЕ ФРАНКЛИНА

\[\lim_{k \to \infty} \int_{[0,1]^d} [f(x)]_{\lambda_k} s_{m}(x) \, dx. \]

3. ДОКАЗАТЕЛЬСТВО ТЕОРЕМ

Доказательство теоремы 2.3. Сначала напомним определение максимальной функции \(\mathcal{M}(g, x) \) интегрируемой функции \(g \). Полагаем

\[\mathcal{M}(g, x) = \sup_{Q, Q \ni x} \frac{1}{\text{mes}(Q)} \int_{Q} |g(x)| \, dx, \]

где верхняя грань рассматривается по всем прямоугольникам, с границами параллельными координатным осям и с центром в точке \(x \). Далее, говоря прямоугольник с центром \(x \), будем подразумевать множество вида \(\chi_{[x-\eta, x+\eta]} \).

Из известной теоремы Янсена-Марцинкевича-Зигмунда следует, что (см. [15], §2.3) если \(\chi_A(x) \) - характеристическая функция множества \(A \), то для множества \(B = \{ x : \mathcal{M}(\chi_A, x) > \zeta \} \) выполняется \(\text{mes}(B) \leq C_d(\zeta)^{-1}\text{mes}(A) \), где \(C_d \) - постоянная, зависящая только от размерности \(d \).

Пусть \(m_0 \) - произвольное натуральное число и \(j^0 \in \mathbb{N}^{d} \). Заметим, что если \(i = (i_1, \ldots, i_d) \) и \(i_{\nu} = \max_{\nu} i_{\nu} > m_0 \), то \((f, M_j^{m_0}) = 0 \). Действительно, поскольку \(i_{\nu} > m_0 \), то \(\int_{0}^{1} f_{i_{\nu}}(x_{i_{\nu}}) \phi_{j^{m_0}}(x_{i_{\nu}}) \, dx_{i_{\nu}} = 0 \), и поэтому

\[(f, M_j^{m_0}) = \frac{2^d}{\text{mes}(\Delta_j^{m_0})} \prod_{\nu=0}^{d} (f_{\nu}, \phi_{j^{m_0}}) = 0. \]

Следовательно, для любого \(n \geq m_0 \) имеем \((S_n, M_j^{m_0}) = (S_{m_0}, M_j^{m_0}) \). Поэтому, достаточно доказать, что

\[\lim_{k \to \infty} \left(\lim_{n \to \infty} \int (f(x))_{\lambda_k} s_{n}(x) M_j^{m_0}(x) \, dx \right) = 0. \]

Для произвольного \(\varepsilon > 0 \) найдется такое \(k_0 \), что для всех \(k \geq k_0 \) выполняется

\[C_d \cdot \lambda_k \cdot \text{mes}(E_k)(12 \gamma^2)^d < \varepsilon \]

и

\[\text{mes}(E_k) < \frac{(12 \gamma^3)^{-d}}{C_d^{d}} \text{mes}(\Delta_j^{m_0}), \]

где

\[E_k = \{ x \in [0,1]^d : S^{*}(x) > \lambda_k \}. \]

Обозначим

\[B_k = \{ x \in [0,1]^d : \mathcal{M}(\chi_{E_k}, x) > (12 \gamma^2)^{-d} \}. \]
Тогда

\[\text{mes}(B_k) \leq C_d(12\gamma^2)^d \cdot \text{mes}(E_k). \]

Лемма 3.1. Если \(\Delta^*_j \not\subset B_k \), то \(|S_n(x)| < 2^d\lambda_k \), когда \(x \in \Delta^*_j \).

Доказательство. Допустим обратное, что для некоторого \(x^0 \in \Delta^*_j \) имеет место \(|S_n(x^0)| \geq 2^d\lambda_k \). Поскольку функция \(S_n(x) \) линейная по каждой переменной \(x_l \), \(l = 1, \ldots, d \), на \(x_{l=1}^d[\tau^n_{i_l}, \tau^n_{i_l+1}] \), где \(i_l \) принимают значения \(j_l - 1 \) и \(j_l \), для \(l = 1, \ldots, d \), то для некоторого \(i = (i_1, i_2, \ldots, i_d) \) имеем \(\sup_{x \in \Delta^*_j} |S_n(x)| = L_i \geq 2^d\lambda_k \), где \(L_i = \lim_{x \to \Delta^*_j} |S_n(x)| \), а \(\tau^n_i \in \underline{\Delta^*_j} \).

В силу леммы 2.1, имеем

\[\text{mes}\{x \in \Delta^*_j : |S_n(x)| > \lambda_k\} \geq \frac{\text{mes}(\Delta^*_j)}{3^d}. \]

Поскольку \(\Gamma \) парно регулярно с параметром \(\gamma \), то для любой точки \(x \in \Delta^*_j \) прямоугольник

\[Q = x_{l=1}^d[\tau^n_{i_l} - (\gamma + 1)(\tau^n_{i_l+1} - \tau^n_{i_l-1}), \tau^n_{i_l} + (\gamma + 1)(\tau^n_{i_l+1} - \tau^n_{i_l-1})] \]

содержит \(\Delta^*_j \). Очевидно, что \(\text{mes}(Q) = 2^d(\gamma + 1)^d\text{mes}(\Delta^*_j) \). Поэтому из (3.6) следует

\[M(x, E_k, x) \geq \frac{1}{2^d(\gamma + 1)^d\text{mes}(\Delta^*_j)} \cdot \frac{\text{mes}(\Delta^*_j)}{3^d} \geq (12\gamma)^{-d}, \quad x \in \Delta^*_j. \]

Следовательно, \(\Delta^*_j \subset B_k \). \(\square \)

Фиксируем некоторое \(k \), для которого выполняются (3.2), (3.3). Пусть \(m_1 \) наименьшее натуральное число со свойством

\[\{ i : \tau^m_1 \in \Delta^*_j \text{ и } \Delta^*_j \subset B_k \} \neq \emptyset. \]

Заметим, что \(m_1 > m_0 \). Действительно, если бы выполнялось (3.7) для некоторого \(m_1 \leq m_0 \), то выполнялось бы

\[\text{mes}(B_k) \geq \text{mes}(\Delta^*_j) \geq \frac{1}{\gamma^d \text{mes}(\Delta^*_j)} \cdot \frac{\text{mes}(\Delta^*_j)}{3^d} \geq (12\gamma)^{-d}, \quad x \in \Delta^*_j. \]

Но, из (3.3), (3.5) имеем, что \(\text{mes}(B_k) < \gamma^{-d}\text{mes}(\Delta^*_j) \). Полученное противоречие доказывает, что \(m_1 > m_0 \). Обозначим

\[J_{m_1} = \{ i : \tau^m_1 \in \Delta^*_j \}, \quad J_{m_1} = \{ i \in J_{m_1} : \Delta^*_j \subset B_k \}, \quad \chi_{m_1} = J_{m_1} \setminus J_{m_1}. \]
Очевидно, что $\mathcal{J}_1 \cap \mathcal{K}_{m_1} = \emptyset$ и $\mathcal{J}_1 \cup \mathcal{K}_{m_1} = \{1 : \tau_1^{m_1} \in \Delta_{j_0}^{m_0}\}$. Поэтому, применяя лемму 2.3, найдем представление

$$M_j^{m_0} = \sum_{i \in \mathcal{J}_{m_1}} \alpha_i^{(m_1)} M_i^{m_1} + \sum_{i \in \mathcal{K}_{m_1}} \beta_i^{(m_1)} M_i^{m_1},$$

где

$$\alpha_i^{(m_1)} \geq 0, \quad \beta_i^{(m_1)} \geq 0 \quad \text{и} \quad \sum_{i \in \mathcal{J}_{m_1}} \alpha_i^{(m_1)} + \sum_{i \in \mathcal{K}_{m_1}} \beta_i^{(m_1)} = 1.$$

Применим лемму 2.3, для каждой функции $M_i^{m_1}$, $i \in \mathcal{K}_{m_1}$, найдем представление

$$M_i^{m_1} = \sum_{j : \Delta_j^{m_1+1} \subset \Delta_i^{m_1}} \alpha_i^j M_j^{m_1+1}, \quad \alpha_i^j \geq 0.$$

Отметим, что для многих i в сумме (3.9) только один коэффициент α_i^j отличен от нуля и равен единице. Обозначим

$$\mathcal{J}_{m_1+1} = \{1 : \tau_1^{m_1+1} \in \cup_{j \in \mathcal{K}_{m_1}} \Delta_j^{m_1}\}, \quad \mathcal{J}_{m_1+1} := \{j \in \mathcal{J}_{m_1+1} : \Delta_j^{m_1+1} \subset B_k\}, \quad \mathcal{J}_{m_1+1} = \mathcal{J}_{m_1+1}' \setminus \mathcal{J}_{m_1+1}.$$

Подставляя выражения для $M_i^{m_1}$, $i \in \mathcal{K}_{m_1}$, из (3.9) во вторую сумму из (3.8), и сгруппировав подобные члены, получаем

$$\sum_{i \in \mathcal{K}_{m_1}} \beta_i^{(m_1)} M_i^{m_1} = \sum_{i \in \mathcal{J}_{m_1+1}} \alpha_i^{(m_1+1)} M_i^{m_1+1} + \sum_{i \in \mathcal{K}_{m_1+1}} \beta_i^{(m_1+1)} M_i^{m_1+1}.$$

Из (3.8) и (3.10) имеем

$$M_j^{m_0} = \sum_{l=m_1}^{m_0+1} \sum_{i \in \mathcal{J}_l} \alpha_i^{(l)} M_i^{l} + \sum_{i \in \mathcal{K}_{m_1+1}} \beta_i^{(m_1+1)} M_i^{m_1+1},$$

где $\alpha_i^{(l)} \geq 0, l = m_1, m_1+1, \beta_i^{(m_1+1)} \geq 0$. По индукции, для всех $n > m_1$ определим

$$\mathcal{J}_n = \{1 : \tau_n^n \in \cup_{j \in \mathcal{K}_{n-1}} \Delta_j^{n-1}\}, \quad \mathcal{J}_n = \{j \in \mathcal{J}_n : \Delta_j^n \subset B_k\} \quad \mathcal{K}_n = \mathcal{J}_n \setminus \mathcal{J}_n.$$

Аналогично (3.11), получим

$$M_j^{m_0} = \sum_{l=m_1}^{n} \sum_{i \in \mathcal{J}_l} \alpha_i^{(l)} M_i^{l} + \sum_{i \in \mathcal{K}_n} \beta_i^{(n)} M_i^{n},$$

где $\alpha_i^{(l)} \geq 0, l = m_1, \ldots, n, \beta_i^{(n)} \geq 0$. Из леммы 3.1 и (3.12) следует, что

$$|S_n(x)| \leq 2^d \lambda_k, \quad \text{когда} \quad x \in \Delta_j^n, \quad j \in \mathcal{K}_n.$$

Очевидно, что для любого n имеет место (см. (3.4))

$$D_n = \bigcup_{l=m_1}^{n} \bigcup_{i \in \mathcal{J}_l} \Delta_i^l \subset B_k.$$

11
С учетом (3.2) и (3.5), получим

(3.13) \[\lambda_k \cdot \text{mes}(D_n) < \varepsilon. \]

Докажем, что для любого \(l, m_1 \leq l \leq n \), выполняется

(3.14) \[|S_l(x)| \leq 2^d \lambda_k, \text{ когда } x \in \Delta^1_l, \ i \in \mathcal{B}_l. \]

Допустим обратное. Для некоторых \(l \in \{m_1, \ldots, n\}, \ i \in \mathcal{B}_l \) и \(x \in \Delta^1_l \) выполняется \(|S_l(x)| > 2^d \lambda_k \). А из этого, как мы заметили при доказательстве леммы 3.1, следует, что существует \(\tau^l_i \in \Delta^1_l \), такое что

\[\text{mes}\{x \in \Delta^1_l : |S_l(x)| > \lambda_k\} \geq \frac{\text{mes}(\Delta^1_l)}{3d}. \]

Следовательно

(3.15) \[\text{mes}(\Delta^1_l \cap E_k) \geq \frac{\text{mes}(\Delta^1_l)}{3d}. \]

Пусть \(m \) такое, что \(\Delta^1_m \subset \Delta^1_{m-1} \) и \(y \) любая точка из \(\Delta^1_m \). Из регулярности по паре разбиения \(\mathcal{T} \) и \(\tau^1_i \in \Delta^1_l \) следует, что куб \(Q = [\epsilon_1, \eta_1] \times \cdots \times [\epsilon_d, \eta_d] \) с центром \(y \) и ребрами с длиной \(\eta_m - \epsilon_m = (\gamma(\gamma+1)+1)(\tau^1_{j_{m+1}} - \tau^1_{j_m}) < 3\gamma^2(\tau^1_{j_{m+1}} - \tau^1_{j_m}) \) содержит в себе \(\Delta^1_{m-1} \). Ясно, что

(3.16) \[\text{mes}(Q) < (3\gamma^2)^d \text{mes}(\Delta^1_l). \]

Из (3.15), (3.16) и \(y \in \Delta^1_m \subset Q \) следует, что \(\mathcal{M}(x_{E_k}, y) > (9\gamma^2)^{-d}. \)

По определению множества \(B_k \) (см. (3.4)), имеем \(y \in B_k \). Следовательно, \(\Delta^1_m \subset B_k \). Следовательно \(m \not\in \mathcal{K}_{l-1} \). Поэтому \(i \not\in \mathcal{B}_l \). Полученное противоречие доказывает (3.14).

Обозначим \(H_n = \bigcup_{l \in \mathcal{K}_n} \Delta^1_l \). Тогда из (3.12) следует, что

(3.17) \[|S_n(x)| \leq 2^d \cdot \lambda_k, \text{ когда } x \in H_n. \]

Обозначим

\[g^{(n)}_1(x) = \sum_{l=m_1}^{n} \sum_{i \in \mathcal{B}_l} \alpha^{(l)}_i M^l_i(x), \quad g^{(n)}_2(x) = \sum_{i \in \mathcal{K}_n} \beta^{(n)}_i M^n_i(x). \]

Поскольку \(\alpha^{(l)}_i \geq 0, \beta^{(n)}_i \geq 0 \) и \(M^{mn}_i(x) = g^{(n)}_1(x) + g^{(n)}_2(x) \), то получаем

(3.18) \[0 \leq g^{(n)}_1(x) \leq M^{mn}_j(x) \leq \frac{2^d}{\text{mes}(\Delta^{mn}_{j_0})} =: C_{mn,j_0} \]

и

(3.19) \[0 \leq g^{(n)}_2(x) \leq M^{mn}_j(x) \leq C_{mn,j_0}. \]

12
О ЕДИНИСТВЕННОСТИ РЯДОВ ПО ОБЩЕЙ СИСТЕМЕ ФРАНКЛИНА

Перейдем к оценки

(3.20) \[\omega_n := \int ||f(x)\lambda_k - S_n(x)|| M_{F_0}^n(x) dx =: \xi_1^{(n)} + \xi_2^{(n)} + \xi_3^{(n)}, \]

где

(3.21) \[\xi_1^{(n)} = \int_{D_n} ||f(x)\lambda_k - S_n(x)|| \phi_1^{(n)}(x) dx, \]

(3.22) \[\xi_2^{(n)} = \int_{H_n \cap E_k} ||f(x)\lambda_k - S_n(x)|| \phi_2^{(n)}(x) dx. \]

(3.23) \[\xi_3^{(n)} = \int_{H_n \setminus E_k} ||f(x)\lambda_k - S_n(x)|| \phi_2^{(n)}(x) dx. \]

Из (3.14) и (3.17) – (3.19) следует, что подынтегральные функции в (3.21) - (3.23) ограничены числом \(C_{m_0,j_0}(2^d + 1)\lambda_k \). Поэтому, из (3.13) и (3.2) следует, что

(3.24) \[\xi_1^{(n)} < \varepsilon \cdot C_{m_0,j_0,d} \quad \text{и} \quad \xi_2^{(n)} < \varepsilon \cdot C_{m_0,j_0,d}. \]

Учитывая, что \(f(x) = [f(x)]_{\lambda_k} \) для \(x \notin E_k \) и последовательность \(S_n(x) \) по мере сходится к \(f(x) \), получим, что последовательность \(||[f(x)]_{\lambda_k} - S_n(x)|| \chi_{H_n \setminus E_k}(x) \phi_2^{(n)}(x) \)

по мере сходится к нулю и ограничена числом \(C_{m_0,j_0}(2^d + 1)\lambda_k \). Следовательно,

(3.25) \[\lim_{n \to \infty} \xi_3^{(n)} = 0. \]

Из (3.20) – (3.25) следует, что при достаточно больших \(n \) имеем \(\omega_n < 3\varepsilon \cdot C_{m_0,j_0,d} \). Отсюда следует (3.1). Теорема 2.3 доказана.

Abstract. The paper considers the general Franklin system corresponding to a strongly regular by couples partition of the segment \([0; 1]\). For series by this system, we prove uniqueness theorems and obtain restoration formulas for coefficients, provided that the series converge in measure and satisfy some necessary condition.

СПИСОК ЛИТЕРАТУРЫ

Поступила 6 декабря 2017