ՀՀ ԳԱԱ Տեղեկագիր: Մաթեմատիկա =Известия НАН Армении: Математика =Proceedings of the NAS Armenia: Mathematics

Inequalities in the sense of Brunn-Minkowski-Vitale for random convex bodies

Mecke, J. and Schwella, A. (2002) Inequalities in the sense of Brunn-Minkowski-Vitale for random convex bodies. Հայաստանի ԳԱԱ Տեղեկագիր. Մաթեմատիկա, 37 (1). pp. 19-25. ISSN 00002-3043

[img]
Preview
PDF
Download (1881Kb) | Preview

    Abstract

    The well-known Brunn-Minkowski inequality concerning convex addition of measurable sets was generalized by R. A. Vitale for the case of random sets. The paper presents a new proof in the special case of random convex bodies, which does not employ the law of large numbers for random sets, but the mixed area measure. In thhis way, inequalities for mixed volumes and intrinstic volumes of random convex bodies are also obtanied. Finally, consequences for stationary random hyperplane processes are discussed.

    Item Type: Article
    Additional Information: Неравенства в смысле Бруна-Минковского-Витале для случайных выпуклых тел / Й. Мекке, А. Швелла.
    Subjects: Q Science > QA Mathematics
    Divisions: UNSPECIFIED
    Depositing User: Bibliographic Department
    Date Deposited: 03 Sep 2012 11:08
    Last Modified: 05 Nov 2012 13:21
    URI: http://mathematics.asj-oa.am/id/eprint/218

    Actions (login required)

    View Item